Further Properties of Quantum Spline Spaces
نویسندگان
چکیده
منابع مشابه
some properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولSpaces of Bivariate Spline
We consider the spaces of bivariate C-splines of degree k deened over arbitrary triangulations of a polygonal domain. We get an explicit formula for the dimension of such spaces when k 3 + 2 and construct a local supported basis for them. The dimension formula is valid for any polygonal domain even it is complex connected , and the formula is sharp since it arrives at the lower-bound which is g...
متن کاملFurther properties of null-additive fuzzy measure on metric spaces
We shall continue to discuss further properties of null-additive fuzzy measure on metric spaces following the previous results. Under the null-additivity condition, some properties of the inner/outer regularity and the regularity of fuzzy measure are shown. Also the strong regularity of fuzzy measure is discussed on complete separable metric spaces. As an application of strong regularity, we pr...
متن کاملDimensions of spline spaces over T-meshes
A T-mesh is basically a rectangular grid that allows T-junctions. In this paper, we propose a method based on Bézier nets to calculate the dimension of a spline function space over a T-mesh. When the order of the smoothness is less than half of the degree of the spline functions, a dimension formula is derived which involves only the topological quantities of the T-mesh. The construction of bas...
متن کاملDimensions of Spline Spaces over Unconstricted Triangulations
One of the puzzlingly hard problems in Computer Aided Geometric Design and Approximation Theory is that of finding the dimension of the spline space of C piecewise degree n polynomials over a 2D triangulation Ω. We denote such spaces by Sr n(Ω). In this note, we restrict Ω to have a special structure, namely to be unconstricted. This will allow for several exact dimension formulas.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2020
ISSN: 2227-7390
DOI: 10.3390/math8101770